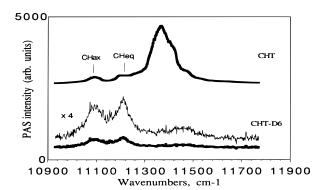
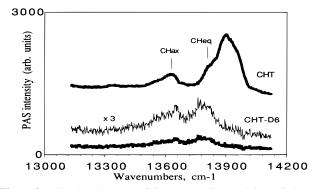
Vibrational Overtone Spectroscopy of Cycloheptatriene- d_6 at the Third and Fourth Overtone Regions

A. V. Fedorov and D. L. Snavely*

Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403


Received: February 6, 1998; In Final Form: April 14, 1998

In a previous report¹ the vibrational overtone spectrum of gaseous cycloheptatriene (CHT) was presented. The main absorption features at the third and fourth overtones were assigned to the CH olefinic oscillators of CHT using a direct correlation method. Assignments were also suggested for the methylenic CH absorptions; however, further confirmation of these spectral assignments was required. In CHT-*d*₆ the CH olefinic transitions are eliminated, and only features due to the methylenic group of the CHT ring will remain in the spectrum.


The CHT- d_6 was synthesized by refluxing 12 mL of C_6D_6 (99.6 atom % d, Aldrich) in the presence of CuBr for 3.5 h with dropwise addition of 40 mL of diazomethane (CH₂N₂) solution in C_6D_6 as was described by Muler et al.² The diazomethane solution was generated from nitrosomethylurea according to the procedure proposed by Arndt.³ Nitrosomethylurea was prepared from acetamide and bromine as was recommended by Amstutz and Myers.⁴ The resulting reaction mixture contained about 2.4% CHT- d_6 dissolved in the deuterated benzene. The ¹H NMR of the mixture displayed the single broad peak around 2.1 ppm corresponding to the CH₂ group of the CHT- d_6 . The amount of solvent was reduced using rotatory evaporation to bring the CHT- d_6 content to 43%. Then the CHT- d_6 sample (91%) was collected using preparative gas chromatography.

The third and fourth overtone spectra of CHT- d_6 were obtained using the photoacoustic spectrometer described previously.¹ The sample pressure was 14 Torr, and 300 Torr of argon was added to increase the photoacoustic signal.

The spectra of CHT- d_6 and CHT at the third and fourth overtone regions are shown in Figures 1 and 2, respectively. Peak positions and vibrational assignments are tabulated in Table 1. At the third overtone the absence of the olefinic CH bond stretch absorptions in the CHT- d_6 spectrum around 11 300-11 400 cm⁻¹ leaves only two well-resolved peaks associated with the methylenic CH bonds of the CHT- d_6 ring (Figure 1). Based on the general pattern reported for the CH methylenic bond in cyclic hydrocarbons⁵ ($rCH_{ax} > rCH_{eq}$) and ab initio geometry optimization for CHT,¹ the lower energy peak at 11 096 cm⁻¹ can be assigned to the CH_{ax} of CHT- d_6 , while the higher energy transition, located at 11 215 cm⁻¹, belongs to the CH_{eq}. Similar arguments can be made for the two peaks recorded in the next overtone region (Figure 2), where the CH_{ax} peak appeared at 13 643 cm⁻¹ and the CH_{eq} transition appeared at 13 785 cm⁻¹. Thus, the spectral results for CHT- d_6 confirmed the assignments suggested for the CHT third and fourth overtone methylenic peaks.

Figure 1. Vibrational spectra of CHT (upper line) and CHT- d_6 (lower lines) at the third overtone region. Spectra were recorded for gaseous samples at room temperature.

Figure 2. Vibrational spectra of CHT (upper line) and CHT- d_6 (lower lines) at the fourth overtone region. Spectra were recorded for gaseous samples at room temperature.

TABLE 1: Peak Positions (in cm^{-1}) and VibrationalAssignments for CHT and CHT- d_6 Molecules

CHT	CHT-d ₆	assign
11 094	11 096	4v CHax
11 216	11 215	4v CHeq
11 313		combination
11 366		4v CH ^{ol} _{2,3,4,5}
11 437		4v CH ^{ol} _{1,6}
13 622	13 643	5v CHax
13 864	13 785	5v CH ^{eq}
13 915		4v CH ^{ol} _{2,3,4,5}
13 981		4v CH ^{ol} _{1,6}
	11 094 11 216 11 313 11 366 11 437 13 622 13 864 13 915	11 094 11 096 11 216 11 215 11 313 11 366 11 437 13 643 13 864 13 785 13 915 13

Acknowledgment. The authors wish to thank Dr. Thomas Kinstle for assistance in the synthetic part of work and J. Romanowitz for the GCMS analysis of the samples.

References and Notes

- (1) Fedorov, A. V.; Snavely, D. N. J. Phys. Chem. A 1997, 101, 9042.
- (2) Muller, E.; Fricke, H. Justus Liebigs Ann. Chem. 1963, 661, 38.
- (3) Arndt, F. Organic Syntheses; Wiley: New York, 1943; Vol. II, p
- 165.(4) Arndt, F. Organic Syntheses; Wiley: New York, 1943; Vol. II, p

(5) Gough, K. M.; Henry, B. R.; Schattka, B. J.; Wildman, T. A. J. Phys. Chem. 1991, 95, 1579.